
SVCCA: Singular Vector
Canonical Correlation Analysis
for Deep Understanding and

Improvement

Maithra Raghu 1 2 Justin Gilmer 2

Jason Yosinski 3 Jascha Sohl Dickstein 2

Abstract

With the continuing empirical successes of
deep networks, it becomes increasingly im-
portant to develop better methods for un-
derstanding training of models and the rep-
resentations learned within. In this paper we
propose Singular Vector Canonical Correla-
tion Analysis (SVCCA), a tool for quickly
comparing two representations in a way that
is both invariant to affine transform (al-
lowing comparison between different layers
and networks) and fast to compute (allow-
ing more comparisons to be calculated than
with previous methods). We deploy this
tool to measure the intrinsic dimensional-
ity of layers, showing in some cases needless
over-parameterization; to probe learning dy-
namics throughout training, finding that net-
works converge to final representations from
the bottom up; to show where class-specific
information in networks is formed; and to
suggest new training regimes that simultane-
ously save computation and overfit less.

1. Introduction

As the empirical success of deep neural networks
((5; 7; 15)) become an indisputable fact, the goal of
better understanding these models escalates in impor-
tance. Central to this aim is a core issue of deciphering
learned representations. Facets of this key question
have been explored empirically, particularly for image
models, in (1; 2; 8; 10; 11; 12; 13; 16; 17). Most of
these approaches are motivated by interpretability of
learned representations. More recently, (9) studied the
similarities of representations learned by multiple net-
works by finding permutations of neurons with maxi-
mal correlation.

In this work we introduce a new approach to the study

of network representations, based on an analysis of
each neuron’s activation vector – the scalar outputs it
emits on input datapoints. With this interpretation of
neurons as vectors (and layers as subspaces, spanned
by neurons), we introduce SVCCA, Singular Vector
Canonical Correlation Analysis, an amalgamation of
Singular Value Decomposition and Canonical Correla-
tion Analysis (4), as a powerful method for analyzing
deep representations.

The main contributions resulting from the introduc-
tion of SVCCA are the following:

1. We ask: is the dimensionality of a layer’s learned
representation the same as the number of neu-
rons in the layer? Answer: No. We show that
the trained network performs equally well with a
number of directions just a fraction of the num-
ber of neurons with no additional training, pro-
vided they are carefully chosen with SVCCA (Sec-
tion 2.1). We explore the consequences for model
compression (Section 4.5).

2. We ask: what do deep representation learning
dynamics look like? Answer: Networks broadly
converge bottom up. Using Weighted SVCCA, we
compare layers across time and find they solid-
ify from the bottom up. This suggests a simple,
computationally more efficient method of train-
ing networks, Freeze Training, where lower layers
are sequentially frozen after a certain number of
timesteps (Sections 4.1, 4.2).

3. We develop a method based on the discrete
Fourier transform which greatly speeds up the ap-
plication of SVCCA to convolutional neural net-
works (Section 3).

4. We also explore an interpretability question, of
when different architectures become sensitive to
output classes. Surprisingly, this sensitivity to
output is determined by the proportion of total
network depth, not the absolute layer depth (Sec-
tion 4.4).

Experimental Details Most of our experiments
are performed on CIFAR-10 (augmented with random
translations). The main architectures we use are a
convolutional network and a residual network1. To
produce a few figures, we also use a toy regression
task: training a four hidden layer fully connected net-
work with 1D input and 4D output, to regress on four
different simple functions.

1Convnet layers: conv-conv-bn-pool-conv-conv-conv-bn-pool-fc-bn-fc-bn-out.
Resnet layers: conv-(x10 c/bn/r block)-(x10 c/bn/r
block)-(x10 c/bn/r block)-bn-fc-out.

Title Suppressed Due to Excessive Size

index over dataset index over dataset index over dataset

Neurons with highest activations
(net1, net2)

Top SVD Directions
(net1, net2)

Top SVCCA directions
(net1, net2)

200
200
200
200

4

1

network

(a) (b) (c) (d)

Figure 1. To demonstrate SVCCA, we consider a toy re-
gression task (regression target as in Figure 3). (a) We
train two networks with four fully connected hidden layers
starting from different random initializations, and exam-
ine the representation learned by the penultimate (shaded)
layer in each network. (b) The neurons with the highest
activations in net 1 (maroon) and in net 2 (green). The
x-axis indexes over the dataset: in our formulation, the rep-
resentation of a neuron is simply its value over a dataset
(Section 2). (c) The SVD directions — i.e. the directions
of maximal variance — for each network. (d) The top
SVCCA directions. We see that each pair of maroon/green
lines (starting from the top) are almost visually identical
(up to a sign). Thus, although looking at just neurons
(b) seems to indicate that the networks learn very differ-
ent representations, looking at the SVCCA subspace (d)
shows that the information in the representations are (up
to a sign) nearly identical.

2. Measuring Representations in
Neural Networks

Our goal in this paper is to analyze and interpret the
representations learned by neural networks. The crit-
ical question from which our investigation departs is:
how should we define the representation of a neuron?
Consider that a neuron at a particular layer in a net-
work computes a real-valued function over the net-
work’s input domain. In other words, if we had a
lookup table of all possible input→ output mappings
for a neuron, it would be a complete portrayal of that
neuron’s functional form.

However, such infinite tables are not only practically
infeasible, but are also problematic to process into a
set of conclusions. Our primary interest is not in the
neuron’s response to random data, but rather in how
it represents features of a specific dataset (e.g. natural
images). Therefore, in this study we take a neuron’s
representation to be its set of responses over a finite
set of inputs — those drawn from some training or
validation set.

More concretely, for a given dataset X = {x1, · · ·xm}
and a neuron i on layer l, zzzli, we define zzzli to be the
vector of outputs on X, i.e.

zzzli = (zzzli(x1), · · · , zzzli(xm))

Note that this is a different vector from the often-
considered vector of the “representation at a layer of
a single input.” Here zzzli is a single neuron’s response
over the entire dataset, not an entire layer’s response
for a single input. In this view, a neuron’s represen-
tation can be thought of as a single vector in a high-
dimensional space. Broadening our view from a sin-
gle neuron to the collection of neurons in a layer, the
layer can be thought of as the set of neuron vectors
contained within that layer. This set of vectors will
span some subspace. To summarize:

Considered over a dataset X with m examples, a
neuron is a vector in Rm.

A layer is the subspace of Rm spanned by its neurons’
vectors.

Within this formalism, we introduce Singular Vector
Canonical Correlation Analysis (SVCCA) as a method
for analysing representations. SVCCA proceeds as fol-
lows:

• Input: SVCCA takes as input two (not necessar-
ily different) sets of neurons (typically layers of a
network) l1 = {zzzl11 , ..., zzzl1m1

} and l2 = {zzzl21 , ..., zzzl2m2
}

• Step 1 First SVCCA performs a singular value
decomposition of each subspace to get sub-
subspaces l′1 ⊂ l1, l

′
2 ⊂ l2 which comprise of the

most important directions of the original sub-
spaces l1, l2. In general we take enough directions
to explain 99% of variance in the subspace. This is
especially important in neural network represen-
tations, where as we will show many low variance
directions (neurons) are primarily noise.

• Step 2 Second, compute the Canonical Corre-
lation similarity ((4)) of l′1, l

′
2: linearly trans-

form l′1, l
′
2 to be as aligned as possible and

compute correlation coefficients. In partic-
ular, given the output of step 1, l′1 =

{zzz′l11 , ..., zzz′
l1
m′1
}, l′2 = {zzz′l21 , ..., zzz′

l2
m′2
}, CCA lin-

early transforms these subspaces l̃1 = WX l
′
1,

l̃2 = WY l
′
2 such as to maximize the correlations

corrs = {ρ1, . . . ρmin(m′1,m
′
2)
} between the trans-

formed subspaces.

• Output: With these steps, SVCCA outputs pairs
of aligned directions, (z̃zzl1i , z̃zz

l2
i) and how well they

correlate, ρi. Step 1 also produces intermediate
output in the form of the top singular values and
directions.

For a more detailed description of each step, see the
Appendix. SVCCA can be used to analyse any two

Title Suppressed Due to Excessive Size

0 100 200 300 400 500

Number of directions

0.2

0.4

0.6

0.8

A
cc

ur
ac

y
CIFAR10: Accuracy with SVCCA directions

 and random neurons

p2 (4096 neurons) SVCCA
p2 max acts neurons
p2 random neurons
fc1 (512 neurons) SVCCA
fc1 random neurons
fc2 (256 neurons) SVCCA
fc2 max acts neurons

0 10 20 30 40 50

Number of directions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

CIFAR10 acc vs neurons used for SVCCA dirns

SVCCA fc1 (512 neurons)

SVCCA p2 (4096 neurons)

50 neurons for fc1

150 neurons for p2

300 neurons for p2

100 neurons for fc1

(a) (b)

Figure 2. Demonstration of (a) disproportionate impor-
tance of SVCCA directions, and (b) distributed nature of
some of these directions. For both panes, we first find
the top k SVCCA directions by training two conv nets on
CIFAR-10 and comparing corresponding layers. (a) We
project the output of the top three layers, pool1, fc1, fc2,
onto this top-k subspace. We see accuracy rises rapidly
with increasing k, with even k � num neurons giving rea-
sonable performance, with no retraining. Baselines of ran-
dom k neuron subspaces and max activation neurons re-
quire larger k to perform as well. (b): after projecting
onto top k subspace (like left), dotted lines then project
again onto m neurons, chosen to correspond highly to the
top k-SVCCA subspace. Many more neurons are needed
than k for better performance, suggesting distributedness
of SVCCA directions.

sets of neurons. In our experiments, we utilize this
flexibility to compare representations across different
random initializations, architectures, timesteps during
training, and specific classes and layers.

Figure 1 shows a simple, intuitive demonstration of
SVCCA. We train a small network on a toy regression
task and show each step of SVCCA, along with the
resulting very similar representations. SVCCA is able
to find hidden similarities in the representations.

2.1. Distributed Representations

An important property of SVCCA is that it is
truly a subspace method: both SVD and CCA
work with span(zzz1, . . . , zzzm) instead of being axis
aligned to the zzzi directions. SVD finds singu-
lar vectors zzz′i =

∑m
j=1 sijzzzj , and the subsequent

CCA finds a linear transform W , giving orthogo-
nal canonically correlated directions {z̃zz1, . . . , z̃zzm} =
{
∑m
j=1 w1jzzz

′
j , . . . ,

∑m
j=1 wmjzzz

′
j}. In other words,

SVCCA has no preference for representations that are
neuron (axes) aligned.

If representations are distributed across many dimen-
sions, then this is a desirable property of a representa-
tion analysis method. Previous studies have reported
that representations may be more complex than ei-
ther fully distributed or axis-aligned (14; 18; 9) but
this question remains open.

We use SVCCA as a tool to probe the nature of rep-
resentations via two experiments:

(a) We find that the subspace directions found by
SVCCA are disproportionately important to the
representation learned by a layer, relative to
neuron-aligned directions.

(b) We show that at least some of these directions are
distributed across many neurons.

Experiments for (a), (b) are shown in Figure 2 as (a),
(b) respectively. For both experiments, we first ac-
quire two different representations, l1, l2, for a layer
l by training two different random initializations of
a convolutional network on CIFAR-10. We then ap-
ply SVCCA to l1 and l2 to get directions {z̃zzl11 , ..., z̃zz

l1
m}

and {z̃zzl21 , ..., z̃zz
l2
m}, ordered according to importance by

SVCCA, with each z̃zzlij being a linear combination of

the original neurons, i.e. z̃zzlij =
∑m
r=1 α

(li)
jr zzz

li
r .

For different values of k < m, we can then restrict layer
li’s output to lie in the subspace of span(z̃zzli1 , . . . , z̃zz

li
k),

the most useful k-dimensional subspace as found by
SVCCA, done by projecting each neuron into this k
dimensional space.

We find — somewhat surprisingly — that very few
SVCCA directions are required for the network to per-
form the task well. As shown in Figure 2(a), for a
network trained on CIFAR-10, the first 25 dimensions
provide nearly the same accuracy as using all 512 di-
mensions of a fully connected layer with 512 neurons.
The accuracy curve rises rapidly with the first few
SVCCA directions, and plateaus quickly afterwards,
for k � m. This suggests that the useful informa-
tion contained in m neurons is well summarized by the
subspace formed by the top k SVCCA directions. Two
baselines for comparison are picking random and max-
imum activation neuron aligned subspaces and pro-
jecting outputs onto these. Both of these baselines
require far more directions (in this case: neurons) be-
fore matching the accuracy achieved by the SVCCA
directions. These results also suggest approaches to
model compression, which are explored in more detail
in Section 4.5.

Figure 2(b) next demonstrates that these useful
SVCCA directions are at least somewhat distributed
over neurons rather than axis-aligned. First, the top k
SVCCA directions are picked and the representation is
projected onto this subspace. Next, the representation
is further projected onto m neurons, where the m are
chosen as those most important to the SVCCA direc-
tions . The resulting accuracy is plotted for different

Title Suppressed Due to Excessive Size

choices of k (given by x-axis) and different choices of m
(different lines). That, for example, keeping even 100
fc1 neurons (dashed green line) cannot maintain the
accuracy of the first 20 SVCCA directions (solid green
line at x-axis 20) suggests that those 20 SVCCA di-
rections are distributed across 5 or more neurons each,
on average. Figure 3 shows a further demonstration of
the effect on the output of projecting onto top SVCCA
directions, here for the toy regression case.

0 50000 100000 150000 200000
4

3

2

1

0

1

2

3

4

Original output
 using 200 directions

0 50000 100000 150000 200000

Projection on top
 02 SVCCA directions

0 50000 100000 150000 200000

Projection on top
 06 SVCCA directions

0 50000 100000 150000 200000

Projection on top
 15 SVCCA directions

0 50000 100000 150000 200000

Projection on top
 30 SVCCA directions

Figure 3. The effect on the output of a latent representa-
tion being projected onto top SVCCA directions in the toy
regression task. Representations of the penultimate layer
are projected onto 2, 6, 15, 30 top SVCCA directions (from
second pane). By 30, the output looks very similar to the
full 200 neuron output (left).

Why the two step SV + CCA method is
needed. Both SVD and CCA have important prop-
erties for analysing network representations and
SVCCA consequently benefits greatly from being a two
step method. CCA is invariant to affine transforma-
tions, enabling comparisons without natural alignment
(e.g. different architectures, Section 4.3). See Ap-
pendix 7 for proofs and a demonstrative figure. While
CCA is a powerful method, it also suffers from certain
shortcomings, particularly in determining how many
directions were important to the original space X,
which is the strength of SVD. See Appendix for an
example where naive CCA performs badly. Both the
SVD and CCA steps are critical in the calculation of
Weighted SVCCA, used for learning dynamics in Sec-
tion 4.1.

3. Scaling SVCCA for Convolutional
Layers

Applying SVCCA to convolutional layers can be done
in two natural ways:

(1) Same layer comparisons: If X,Y are the same
layer (at different timesteps or across random ini-
tializations) receiving the same input we can con-
catenate along the pixel (height h, width w) co-
ordinates to form a vector: a conv layer h×w× c
maps to c vectors, each of dimension hwd, where
d is the number of datapoints. This is a natu-
ral choice because neurons at different pixel coor-
dinates see different image data patches to each

other. When X,Y are two versions of the same
layer, these c different views correspond perfectly.

(2) Different layer comparisons: When X,Y are not
the same layer, the image patches seen by different
neurons have no natural correspondence. But we
can flatten an h × w × c conv into hwc neurons,
each of dimension d. This approach is valid for
convs in different networks or at different depths.

3.1. Scaling SVCCA with Discrete Fourier
Transforms

Applying SVCCA to convolutions introduces a compu-
tational challenge: the number of neurons (h×w× c)
in convolutional layers, especially early ones, is very
large, making SVCCA prohibitively expensive due to
the large matrices involved. Luckily the problem of
approximate dimensionality reduction of large matri-
ces is well studied, and efficient algorithms exist, e.g.
(3).

For convolutional layers however, we can avoid dimen-
sionality reduction and perform exact SVCCA, even
for large networks. This is achieved by preprocess-
ing each channel with a Discrete Fourier Transform
(which preserves CCA due to invariances, see Ap-
pendix), causing all (covariance) matrices to be block-
diagonal. This allows all matrix operations to be per-
formed block by block, and only over the diagonal
blocks, vastly reducing computation. We show:

Theorem 1. Suppose we have a translation invari-
ant (image) dataset X and convolutional layers l1,
l2. Letting DFT (li) denote the discrete fourier trans-
form applied to each channel of li, the covariance
cov(DFT (l1), DFT (l2)) is block diagonal, with blocks
of size c× c.

We make only two assumptions: 1) all layers below l1,
l2 are either conv or pooling layers (translation equiv-
ariance) 2) The dataset X has all translations of the
images Xi. This is necessary in the proof for certain
symmetries in neuron activations, but these symme-
tries typically exist in natural images even without
translation invariance, as shown in Figure 9 in the
Appendix. Below are key statements, with proofs in
Appendix.

Definition 1. Say a single channel image dataset
X of images is translation invariant if for any (wlog
n × n) image Xi ∈ X, with pixel values {zzz11, ...zzznn},
X

(a,b)
i = {zzzσa(1)σb(1), ...zzzσa(n)σb(n)} is also in X, for

all 0 ≤ a, b ≤ n− 1, where σa(i) = a+ i mod n (and
similarly for b).

For a multiple channel image Xi, an (a, b) translation

Title Suppressed Due to Excessive Size

is an (a, b) height/width shift on every channel sepa-
rately. X is then translation invariant as above.

To prove Theorem 1, we first show another theorem:

Theorem 2. Given a translation invariant dataset X,
and a convolutional layer l with channels {c1, . . . ck}
applied to X

(a) the DFT of ci, FcF
T has diagonal covariance ma-

trix (with itself).

(b) the DFT of ci, cj, FciF
T , FcjF

T have diagonal
covariance with each other.

Finally, both of these theorems rely on properties of
circulant matrices and their DFTs:

Lemma 1. The covariance matrix of ci applied to
translation invariant X is circulant and block circu-
lant.

Lemma 2. The DFT of a circulant matrix is diagonal.

4. Applications of SVCCA

4.1. Learning Dynamics with SVCCA

We can use SVCCA as a window into learning dy-
namics by comparing the representation at a layer at
different points during training to its final representa-
tion. Furthermore, as the SVCCA computations are
relatively cheap to compute compared to methods that
require training an auxiliary network for each compari-
son (1; 8; 9), we can compare all layers during training
at all timesteps to all layers at the final time step,
producing a rich view into the learning process. The
outputs of SVCCA are the aligned directions (x̃i, ỹi),
how well they align, ρi, as well as intermediate out-
put from the first step, of singular values and direc-

tions, λ
(i)
X , x′

(i)
, λ

(j)
Y , y′

(j)
. We use Weighted SVCCA

to combine these outputs to produce a single number
that encapsulates how well the representations of two
layers are aligned with each other.

Weighted SVCCA Weighted SVCCA condenses
the similarity of the representations of two layers into
one number, using the output of SVCCA. It computes
how well the important directions (singular directions)
of two layers X,Y , are preserved by the aligned sub-

spaces X̃, Ỹ . In more detail, letting x′
(1)
, . . . , x′

(n)
be

the singular directions for X, with associated singu-

lar values λ
(i)
X , and X̃, Ỹ being the aligned directions,

we first project the x′
(i)

directions into the aligned,
X̃, subspace. Then, we weight by the canonical cor-
relation coefficients ρi and multiply the norm of the

resulting projection. In particular, we compute:

1∑
λ
(i)
X

n∑
i=1

λ
(i)
X ||(ρX̃

T)x′
(i)||

where ρX̃T weights row i (the ith SVCCA direction
with coefficient ρi – ie ρ acts as a diagonal matrix).
This tells us how well the top 99% of SVD (max-
imal variance) directions of X are preserved by the
aligned (by CCA) directions of X with respect to Y ,
also weighted by their respective correlations. Apply-
ing Weighted SVCCA, we get a single number for the
representation alignment for every pair of layers across
all timesteps, pictured with pane plots in Figure 4.

la
ye

r
(d

ur
in

g
tr

ai
ni

ng
)

layer (end of training)

C
on

vn
et

, C
IF

A
R

-1
0

R
es

ne
t,

 C
IF

A
R

-1
0

la
ye

r
(d

ur
in

g
tr

ai
ni

ng
)

layer (end of training) layer (end of training) layer (end of training)

Weighted SVCCA scale

0% trained 35% trained 75% trained 100% trained

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.2

0.4

0.6

0.8

1.0

S
V

C
C

A
 o

f
la

y
e
r

w
it

h
 f

in
a
l
st

e
p

Layer dynamics with SVCCA

in

c1

c2

bn1

p1

c3

c4

c5

bn2

p2

fc1

bn3

fc2

bn4

logits

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
V

C
C

A
 o

f
la

y
e
r

w
it

h
 f

in
a
l
st

e
p

Layer dynamics with SVCCA

in

res

bn_cv

bn_cv

res

bn_cv

bn_cv

res

bn_cv

bn_cv

out

Figure 4. Learning dynamics plots for conv (top) and res
(middle) nets trained on CIFAR-10. Each pane is a ma-
trix of size layers × layers, with a single number (from
Weighted SVCCA) giving the similarity between the two
layers. Note that learning broadly happens ‘bottom up’ –
layers closer to the input seem to solidify into their final
representations with the exception of the very top layers.
This is also seen in the line plot (bottom), which plots the
SVCCA similarity of each layer with its final representa-
tion, as a function of training step, for both the conv (left
pane) and res (right pane) nets. Other patterns are also
visible – batch norm layers maintain perfect similarity to
the layer preceding them, due to scaling invariance. In the
res net plot, we see that a stripe like pattern due to skip
connections inducing high similarities to previous layers.

4.2. Freeze Training

Having observed that networks broadly converge from
the bottom up, we propose a training method where we

Title Suppressed Due to Excessive Size

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR10 Conv Freeze Training

test acc base

test acc freeze

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.70

0.75

0.80

0.85

0.90
CIFAR10 Resnet Freeze Training

test acc base

 test acc freeze

Figure 5. Freeze Training reduces training cost and im-
proves generalization. We apply Freeze Training to a con-
volutional network on CIFAR-10 and a residual network on
CIFAR-10. As shown by the grey dotted lines (which in-
dicate the timestep at which another layer is frozen), both
networks have a ‘linear’ freezing regime: for the convolu-
tional network, we freeze individual layers at evenly spaced
timesteps throughout training. For the residual network,
we freeze entire residual blocks at each freeze step. The
curves were averaged over ten runs.

successively freeze lower layers during training, only
updating higher and higher layers, saving all compu-
tation needed for deriving gradients and updating in
lower layers.

We apply this method to convolutional and residual
networks trained on CIFAR-10, Figure 5, using a lin-
ear freezing regime: in the convolutional network, each
layer is frozen at a fraction (layer number/total layers)
of total training time, while for resnets, each resid-
ual block is frozen at a fraction (block number/total
blocks). The vertical grey dotted lines show which
steps have another set of layers frozen. Aside from
saving computation, Freeze Training appears to ac-
tively help generalization accuracy, like early stopping
but with different layers requiring different stopping
points.

in c1 c2 bn1 p1 c3 c4 c5 bn2 p2 fc1 bn3 fc2 bn4

Layer

0.0

0.2

0.4

0.6

0.8

1.0

S
V

C
C

A
 c

o
rr

 w
it

h
 c

la
ss

 l
o
g
it

Convnet

automobile

cat

dog

horse

in c b b r b b r b b r b b r b b r b b r b b r b b

Layer

0.0

0.2

0.4

0.6

0.8

1.0

S
V

C
C

A
 c

o
rr

 w
it

h
 c

la
ss

 l
o
g
it

Resnet

automobile

cat

frog

horse

in c1 c2 bn1 p1 c3 c4 c5 bn2 p2 fc1 bn3 fc2 bn4 logits out

Step 156250

out

bn

bncv

res

bncv

bncv

res

bncv

bncv

res

bncv

bncv

res

bncv

bncv

res

bncv

bncv

res

bncv

bncv

res

bncv

bncv

conv

in

S
te

p
 1

5
6
2
5
0

SVCCAs of Resnet vs Conv

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6. Left and center: Plotting the SVCCA coefficient
between the representation in each layer with the output
logit of a single class, for a subset of the classes in CIFAR-
10. Surprisingly, we see that the amount of correlation with
the output depends the proportion of the way through the
network the input has been processed, and not the number
of layers. We also see for both a convolutional neural net-
work, and a resnet that the classes are learned at similar
rates to each other. Right: We plot the weighted SVCCA
measure for different layers between the convolutional and
resnet architecture and observe that the largest similarities
between the learned representations exist between layers at
similar proportions between input and output.

4.3. Cross Model Comparison

Weighted SVCCA can also be used to compare the
similarity of representations across different random
initializations, and even different architectures. We
compare convolutional networks on CIFAR-10 across
random initializations (Appendix) and also a con-
volutional network to a residual network (Figure 6
right pane), which supports the surprising theory that
learned representations are determined by the propor-
tion of computation performed so far.

4.4. Interpreting Representations: when are
classes learned?

We also can use SVCCA to compare how correlated
representations in each layer are with the logits of each
class in order to measure how knowledge about the
target evolves throughout the network. In Figure 6 we
plot the SVCCA coefficient between the each layer rep-
resentation and the output logit for each class for both
a convolutional neural network and a resnet (there is
only one such coefficient because the output logit is
one dimensional). Although the resnet has 3x layers,
the amount of knowledge about the target seems to
depend linearly on the ratio of layer depth to total
depth of the network, rather than how many layers
have been applied, supported also by the right pane,
where we see that lower convnet layers have similarity
to higher resnet layers.

4.5. Model Compression

p2 fc1 bn3 fc2 bn4

Number of top layers consecutively compressed

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

A
cc

u
ra

cy

CIFAR10: Accuracy after compression by projecting
 layers onto top SVCCA directions

baseline

45% (SVCCA two nets)

63% (SVCCA two nets)

22% (SVCCA against logits)

35% (SVCCA against logits)

Figure 7. Using SVCCA to perform model compression on
the fully connected layers in a CIFAR-10 convnet. The
two gray lines indicate the original train (top) and test
(bottom) accuracy. The two sets of representations for
SVCCA are obtained through 1) two different initializa-
tion and training of convnets on CIFAR-10 2) the layer
activations and the activations of the logits. The latter
provides better results, with the final five layers: pool1,
fc1, bn3, fc2 and bn4 all being compressed to 0.35 of their
original size.

In Figure 3, we saw that projecting onto the sub-
space of the top few SVCCA directions resulted in

Title Suppressed Due to Excessive Size

comparable accuracy. This observations motivates an
approach to model compression. In particular, let-
ting the output vector of layer l be xxx(l) ∈ Rn×1,
and the weights W (l), we replace the usual W (l)xxx(l)

with (W (l)PTx)(Pxxxx
(l)) where Px is a k × n projec-

tion matrix, projecting xxx onto the top SVCCA direc-
tions. This bottleneck reduces both parameter count
and inference computational cost for the layer by a
factor ∼ k

n . In Figure 7,we show that we can consec-
utively compress top layers with SVCCA by a signifi-
cant amount (in one case reducing each layer to 0.35
original size) and hardly affect performance.

5. Conclusion

In this paper we present SVCCA, a general method
which allows for comparison of the learned distributed
representations between different neural network lay-
ers and architectures. Using SVCCA we obtain novel
insights into the learning dynamics and learned rep-
resentations of common neural network architectures.
These insights motivated a new Freeze Training tech-
nique which can reduce the number of flops required
to train networks and potentially even increase gen-
eralization performance. They also motivate a new
algorithm for model compression. Finally, we observe
somewhat surprisingly that networks represent infor-
mation about output targets roughly linearly propor-
tional to their depth in the network.

References

[1] Guillaume Alain and Yoshua Bengio. Under-
standing intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

[2] David Eigen, Jason Rolfe, Rob Fergus, and Yann
LeCun. Understanding deep architectures using
a recursive convolutional network. arXiv preprint
arXiv:1312.1847, 2013.

[3] Nathan Halko, Martinsson Per-Gunnar, and
Joel A. Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM Rev.,
53:217–288, 2011.

[4] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor.
Canonical correlation analysis: An overview with
application to learning methods. Neural Compu-
tation, 16:2639–2664, 2004.

[5] Geoffrey Hinton, Li Deng, Dong Yu, George E.
Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick

Nguyen, Tara N Sainath, et al. Deep neural net-
works for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

[6] Roger A Horn and Charles R Johnson. Matrix
analysis. Cambridge university press, 1985.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural
information processing systems, pages 1097–1105,
2012.

[8] Karel Lenc and Andrea Vedaldi. Understanding
image representations by measuring their equiv-
ariance and equivalence. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 991–999, 2015.

[9] Y. Li, J. Yosinski, J. Clune, H. Lipson, and
J. Hopcroft. Convergent Learning: Do different
neural networks learn the same representations?
In International Conference on Learning Repre-
sentations (ICLR), May 2016.

[10] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lip-
son, and John Hopcroft. Convergent learning: Do
different neural networks learn the same represen-
tations? In Feature Extraction: Modern Ques-
tions and Challenges, pages 196–212, 2015.

[11] Aravindh Mahendran and Andrea Vedaldi. Un-
derstanding deep image representations by invert-
ing them. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, pages 5188–5196, 2015.

[12] Grégoire Montavon, Mikio L Braun, and Klaus-
Robert Müller. Kernel analysis of deep net-
works. Journal of Machine Learning Research,
12(Sep):2563–2581, 2011.

[13] Karen Simonyan, Andrea Vedaldi, and Andrew
Zisserman. Deep inside convolutional networks:
Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[14] Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing prop-
erties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[15] Yonghui Wu, Mike Schuster, Zhifeng Chen,
Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao,

Title Suppressed Due to Excessive Size

Klaus Macherey, et al. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[16] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas
Fuchs, and Hod Lipson. Understanding neural
networks through deep visualization. In Deep
Learning Workshop, International Conference on
Machine Learning (ICML), 2015.

[17] Matthew D Zeiler and Rob Fergus. Visualizing
and understanding convolutional networks. In
European conference on computer vision, pages
818–833. Springer, 2014.

[18] Bolei Zhou, Aditya Khosla, Àgata Lapedriza,
Aude Oliva, and Antonio Torralba. Object detec-
tors emerge in deep scene cnns. In International
Conference on Learning Representations (ICLR),
volume abs/1412.6856, 2014.

	Introduction
	Measuring Representations in Neural Networks
	Distributed Representations

	Scaling SVCCA for Convolutional Layers
	Scaling SVCCA with Discrete Fourier Transforms

	Applications of SVCCA
	Learning Dynamics with SVCCA
	Freeze Training
	Cross Model Comparison
	Interpreting Representations: when are classes learned?
	Model Compression

	Conclusion

